Sr.No. | Data Warehouse (OLAP) | Operational Database(OLTP) |
---|---|---|
1 | It involves historical processing of information. | It involves day-to-day processing. |
2 | OLAP systems are used by knowledge workers such as executives, managers, and analysts. | OLTP systems are used by clerks, DBAs, or database professionals. |
3 | It is used to analyze the business. | It is used to run the business. |
4 | It focuses on Information out. | It focuses on Data in. |
5 | It is based on Star Schema, Snowflake Schema, and Fact Constellation Schema. | It is based on Entity Relationship Model. |
6 | It focuses on Information out. | It is application oriented. |
7 | It contains historical data. | It contains current data. |
8 | It provides summarized and consolidated data. | It provides primitive and highly detailed data. |
9 | It provides summarized and multidimensional view of data. | It provides detailed and flat relational view of data. |
10 | The number of users is in hundreds. | The number of users is in thousands. |
11 | The number of records accessed is in millions. | The number of records accessed is in tens. |
12 | The database size is from 100GB to 100 TB. | The database size is from 100 MB to 100 GB. |
13 | These are highly flexible. | It provides high performance. |
Data Warehouse Features
The key features of a data warehouse are discussed below:
- Subject Oriented - A data warehouse is subject oriented because it provides information around a subject rather than the organization's ongoing operations. These subjects can be product, customers, suppliers, sales, revenue, etc. A data warehouse does not focus on the ongoing operations, rather it focuses on modelling and analysis of data for decision making.
- Integrated - A data warehouse is constructed by integrating data from heterogeneous sources such as relational databases, flat files, etc. This integration enhances the effective analysis of data.
- Time Variant - The data collected in a data warehouse is identified with a particular time period. The data in a data warehouse provides information from the historical point of view.
- Non-volatile - Non-volatile means the previous data is not erased when new data is added to it. A data warehouse is kept separate from the operational database and therefore frequent changes in operational database is not reflected in the data warehouse.
Note: A data warehouse does not require transaction processing, recovery, and concurrency controls, because it is physically stored and separate from the operational database.
Data Warehouse Applications
As discussed before, a data warehouse helps business executives to organize, analyze, and use their data for decision making. A data warehouse serves as a sole part of a plan-execute-assess "closed-loop" feedback system for the enterprise management. Data warehouses are widely used in the following fields:
- Financial services
- Banking services
- Consumer goods
- Retail sectors
- Controlled manufacturing
Types of Data Warehouse
Information processing, analytical processing, and data mining are the three types of data warehouse applications that are discussed below:
- Information Processing - A data warehouse allows to process the data stored in it. The data can be processed by means of querying, basic statistical analysis, reporting using crosstabs, tables, charts, or graphs.
- Analytical Processing - A data warehouse supports analytical processing of the information stored in it. The data can be analyzed by means of basic OLAP operations, including slice-and-dice, drill down, drill up, and pivoting.
- Data Mining - Data mining supports knowledge discovery by finding hidden patterns and associations, constructing analytical models, performing classification and prediction. These mining results can be presented using the visualization tools.
No comments:
Post a Comment